Control of pathfinding by the avian trunk neural crest.

نویسنده

  • C A Erickson
چکیده

We have determined the pathways taken by the trunk neural crest of quail and examined the parameters that control these patterns of dispersion. Using antibodies that recognize migratory neural crest cells (HNK-1), we have found that the crest cells take three primary pathways: (1) between the ectoderm and somites, (2) within the intersomitic space and (3) through the anterior somite along the basal surface of the myotome. The parameters controlling dispersion patterns of neural crest cells are several. The pathways are filled with at least two adhesive molecules, laminin and fibronectin, to which neural crest cells adhere tenaciously in culture. The pattern of migration through the somite may be accounted for in part by the precocious development of the basal lamina of the dermamyotome in the anterior half of the somite; this basal lamina contains both fibronectin and laminin and the neural crest cells prefer to migrate on it. In contrast, the regions into which the crest cells do not invade are filled with relatively nonadhesive molecules such as chondroitin sulphate. Some of the pathways are filled with hyaluronic acid, which stimulates the migration of neural crest cells when they are cultured in three-dimensional gels, presumably by opening spaces. Neural crest cells are also constrained to stay within the pathways by basal laminae, which act as barriers and through which crest cells do not go. Therefore, crest pathways are probably defined by several redundant factors. The directionality of crest cell migration is probably due to contact inhibition, which can be demonstrated in tissue culture. Various grafting experiments have suggested that chemotaxis and haptotaxis do not play a role in controlling the dispersion of the crest cells away from the neural tube. We have documented the extraordinary ability of neural crest cells to disperse in the embryo, even when they are grafted into sites in which they would normally not migrate. We have evidence that the cells' production of plasminogen activator, a proteolytic enzyme, and also the minimal tractional force that crest cells exert on the substratum as they migrate, contribute to this migratory ability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contact inhibition/collapse and pathfinding of neural crest cells in the zebrafish trunk.

Neural crest cells in the trunk of vertebrate embryos have a choice of pathways after emigrating from the neural tube: they can migrate in either the medial pathway between somites and neural tube, or the lateral pathway between somites and epidermis. In zebrafish embryos, the first cells to migrate all choose the medial pathway. High resolution imaging of cells in living embryos suggests that ...

متن کامل

Directing pathfinding along the dorsolateral path - the role of EDNRB2 and EphB2 in overcoming inhibition.

Neural crest cells that become pigment cells migrate along a dorsolateral route between the ectoderm and the somite, whereas most other neural crest cells are inhibited from entering this space. This pathway choice has been attributed to unique, cell-autonomous migratory properties acquired by neural crest cells when they become specified as melanoblasts. By shRNA knockdown and overexpression e...

متن کامل

Cell lineage analysis of the avian neural crest.

Neural crest cells migrate extensively and give rise to diverse cell types, including cells of the sensory and autonomic nervous systems. A major unanswered question concerning the neural crest is when and how the neural crest cells become determined to adopt a particular fate. We have explored the developmental potential of trunk neural crest cells in avian embryos by microinjecting a vital dy...

متن کامل

Trunk Neural Crest Has Skeletogenic Potential

During early vertebrate development, neural crest cells emerge from the dorsal neural tube, migrate into the periphery, and form a wide range of derivatives. There is, however, a significant difference between the cranial and trunk neural crest with respect to the diversity of cell types that each normally produces. Thus, while crest cells from all axial levels form neurons, glia, and melanocyt...

متن کامل

An in vitro assay for neural crest cell migration through the somites.

Neural crest cells in the trunk of the avian embryo come into contact with the somites and neural tube during the course of their migration. However, the relationship between the somites and the early migratory routes followed by these cells is not yet completely understood. Here, we use a tissue culture assay to examine if avian neural crest cells migrate through the somites. Cultures of quail...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 103 Suppl  شماره 

صفحات  -

تاریخ انتشار 1988